
1 INTRODUCTION 

It is known that the dynamic soil-structure interaction is very 
important in structures placed on soft soil deposits. To evaluate 
the soil-foundation response it is necessary to obtain the so-
called dynamic stiffness functions. 

It has been observed that the also known impedance functions 
are strongly dependent on the geometrical characteristics of the 
foundation. In Mexico’s valley there are a lot of heavy structures 
built on deep foundations. Principally, floating piles compose 
these foundations. Some structures with floating pile foundations 
have showed large total and differential settlements after strong 
earthquakes. Some others have collapsed, like those cases 
occurred on September 1985 earthquake. 

In this paper the modification of the relevant natural period 
and damping ratio of the fixed-base structure due to the dynamic 
soil–piles–structure interaction is studied. It includes the change 
on the spectral acceleration. For this propose a soil stratum over 
bedrock is suggested. The dynamic forces are transmitted to each 
floating pile through a rigid cap. The structural response is 
obtained using an equivalent single degree of freedom oscillator. 

The soil-pile interaction is evaluated making use of 
appropriate impedance functions for isolated piles. The group 
effect is taken into account by use of interaction factors. 
Horizontal, vertical and rocking oscillations are considered. An 
approximate method to evaluate the structural response is 
applied, which is based on the approach of the replacement 
oscillator commonly used in problems of soil-structure 
interaction. With this approach, the modified structure in its 
period and damping is treated like a building with rigid base. 

Results are evaluated for a typical site of Mexico City and 
different structure configurations. 

 
 

2 IMPEDANCE FUNCTIONS 

After Lysmer´s analogy (1965), it is accepted that the dynamic 
soil-foundation response is controlled by the impedance 
functions, representing the springs and dampers by which the 
soil is replaced. 

For each particular time-harmonic excitation of frequency 
given, the impedance function is defined as the ratio between the 

force or moment applied on and the resulting displacement or 
rotation of the foundation. 

The impedance functions are complex-valued quantities. 
Their real and imaginary components are both functions of the 
exciting frequency. The real component reflects the stiffness and 
inertia of supporting soil. Its dependence on frequency is 
attributed solely to the influence that frequency has on inertia, 
since soil properties are essentially frequency independent. The 
imaginary component reflects the radiation and material 
dampings of the system. The former being the result of energy 
dissipation by waves propagating away from the foundation is 
frequency dependent, whereas the latter arises mainly from the 
hysteretic cyclic behavior of soil and is practically frequency 
independent. 

It is common to express the impedance functions by the static 
stiffness and the impedance coefficients dependent on frequency 
in the form 

( ) ( )cikKK~ ω+=ω  (1) 

where K = static stiffness; k = coefficient of stiffness; c = 
coefficient of damping and ω = excitation frequency. 
 If K and C represent the equivalent soil spring and dashpot, 
respectively (Figure 1), the impedance function can be written 
alternatively as the complex expression 

( ) ( ) ( )ωω+ω=ω mm CiKK~  (2) 

where the subscript m is associated with horizontal, vertical and 
rocking vibration modes. These parameters are evaluated using 
the material and the geometrical characteristics of the soil-
foundation system. 

2.1 Impedance functions of floating piles 

The equivalent spring and damping representative of soil-
foundation system for isolated piles are determined by 
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The dynamic response of piles subjected to lateral and vertical 
forces as well as moments acting on their head is independent of 
the pile length. Only the uppermost part of the pile experiences 
appreciable displacements. It is along this active length that the 
imposed load is transmitted to the supporting soil. 

 
Figure 1. Equivalent springs and dashpots for the foundation soil. 
 
 The equations to evaluate the impedance functions presented 
in this paper are valid only for “flexible” piles. It is when the pile 
length is larger than the active length. The pile active length is 
consider as Lc=2d(Ep/Es)0.25.(Gazetas, 1983), where d is the pile 
diameter and Ep and Es are the Young’s modulus for pile and 
soil, respectively. Note that a good majority of real life piles, 
even some with large diameters in soft soils, would fall into this 
category. Among exceptions are short piles and caissons. 

The static stiffness as well as the stiffness and damping 
coefficients are presented for an isolated pile embedded into a 
viscoelastic layer over bedrock. The equations for the impedance 
functions parameters were originally taken form Gazetas (1983) 
and presented here after some manipulations. The modes 
adopted for this analysis are the horizontal (m=h), vertical (m=v) 
and rocking (m=hr) vibrations. For static stiffness see Equations 
4, 5 and 6; for stiffness coefficient Equations 7 and 8, and for 
damping coefficients Equations 9, 10 and 11. 
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In the above equations ζ = material soil damping; ν = 
Poisson’s modulus; η = πd/βs is the normalized frequency and ηs 
= πd/2Hs and ηp = πdαs/2Hsβs represent the dominant 
dimensionless frequencies of the layer by transversal and vertical 
vibrations waves, respectively. αs and βs are the P- and S-wave 
velocities, respectively. For vertical vibrations in the range 15 < 
Lp/d < 50 and ηp < η < 1.5ηp, a linear interpolation is admitted. 
The geometrical parameters included in Equations 4 to 11 are 
shown in Figure 2. 

The formulas showed before are reasonably accurate, as they 
are basically curve fits to rigorous numerical results. 

 
Figure 2. Floating pile under horizontal vibrations. 

3 IMPEDANCE FUNCTIONS OF FLOATING PILES FOR 
MEXICO CITY 

Analyzing the typical properties of the subsoil of Mexico City 
and the common geometrical and material characteristics of 
floating pile foundations built there, and based on Equations 4 to 
11, we have constructed plots to determine the necessary 
parameters to calculate the impedance functions. The results of 
this analysis are shown in Figures 3, 4 and 5 for static stiffness, 
damping coefficients and stiffness coefficients, respectively. In 
each figure, results for the horizontal, vertical and rocking modes 
are given. 
The Young´s modulus for soil was taken between 10 and 10,000 
kg/cm2; the Poisson´s modulus and the material damping were 
considered as ½ and 5%, respectively. The diameter of piles was 
adopted between 20 and 50 cm and length no more than 70 m. 
The good majority of floating piles in Mexico City are 
constructed in concrete, so it was assumed a Young´s modulus 
for pile as 230,000 kg/cm2, approximately. 

In Figure 3b, Lp/d = 10, 50, 100, 250 and 500. Note that in 
Figure 4 the vertical damping coefficient depends on the 
slenderness ratio, besides Young´s modulus of soil and 
dimensionless frequency. 

The variation of the stiffness coefficient for vertical vibration 
is shown in Figure 5. For the others vibrations modes, this 
coefficient is considered unity. 

4 INTERACTION FACTORS FOR PILE GROUPS 

A simple analytical solution is adopted for computing the 
dynamic impedance of floating rigidly capped pile groups with 
due consideration to pile-soil-pile interaction. The method, 
proposed by Dobry & Gazetas (1988), introduces some sound 
physical approximations and considers the interference of 
cylindrical wave fields originating along each pile shaft and 
spreading radially outward. The predictions of the simple 
method compare well with rigorous numerical solutions. 



 Poulos (1968, 1971) superposition procedure originally 
developed for statically loaded pile groups, is also valid for the 
dynamic problem. Therefore, considering two identical piles, 
separated by a distance S between axes, the effect of the 
vibration pile on the response of the other pile, can be 
conveniently expressed through the dynamic interaction factor α, 
which is a function of frequency. For vertical and laterally 
oscillating piles, the approximate expressions for interaction 
function are, 
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where αv  and αh are the interaction factors for vertical and 
horizontal vibrations, respectively, and βL = 3.4βs/π/(1-ν). 

It is assumed that no interaction takes place due to the 
rotational deformation of each pile under rocking vibrations. 
Such deformation is felt only a few diameters down from the pile 
head, and produces a rapidly decaying stress around the pile.  
 For each vibration mode, with Equation 12 and 13 a matrix 
interaction factor is constructed for the pile group. The force on 
each pile is obtained solving a complex system of algebraic 
equations. It is composed by the matrix interaction factors, the 
impedance function for an isolated pile and a vector of unity 
displacements (Aguilar & Avilés, 1999). The group pile 
impedance function is evaluated by the ratio between the forces 
on piles and the displacement associated. 

 

      

          

       
Figure 3. Static stiffness for floating pile on Mexico City under 
horizontal (a), vertical (b) and rocking (c) vibrations. 

         

         

          

    
Figure 4. Damping coefficients for floating pile on Mexico City under 
horizontal (a), vertical with Lp/d = 50  (b), vertical with Lp/d = 500 (d) 
and rocking (c) vibrations. 

 



 
Figure 5. Stiffness coefficients for floating pile on Mexico City under 
vertical vibrations.  

5 STRUCTURAL RESPONSE 

When the soil flexibility is included in the dynamic structural 
response, the inertial interaction effects should be evaluated. The 
response system shows an enlargement of its natural structural 
period and a change in its structural damping. The modified 
parameters can be considered as effective period and damping 
(Avilés et al. 1992). The proposed method is based on the 
determination of these equivalent parameters. 

Under harmonic excitation, with time dependence given by 
eiwt , the dynamic equilibrium equation can be expressed as 

K C M Ms s s 0+ − = −i X Xsω ω2
0
&&  (16) 

where Ks, Cs and Ms are the stiffness, damping and mass 
matrices of the system, respectively. M0 represents a load vector. 
 To obtain the period and damping with the dynamic 
interaction effect, it is necessary to relate the real and imaginary 
parts of the solution in Equation 16 with the real and imaginary 
parts of the equation of an equivalent single oscillator with rigid 
base. It is necessary to consider both systems in resonance. 
 By this procedure, the effective structural period can be 
represented by 

% ( ) /T T T Te e h r= + +2 2 2 1 2  (17) 
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where Te  is the structural fundamental period with rigid base; Th 
and Tr are the natural periods on horizontal and rocking 
vibrations, respectively; D is the representative depth foundation 
and Me and He are the structure equivalent mass and height, 
respectively. Note that Kh and Kr are the equivalent springs of 
soil taken from the impedance functions. 
 The determination of the effective period follows a iterative 
process, since the natural periods in horizontal and rocking 
vibrations are unknown. 
 On the other hand, by equating the imaginary parts of the 
equations mentioned before neglecting damping terms of second 
order, an approximation of the effective damping empirically 
calibrated with the rigorous solution is given by 
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where ζh and ζr represent the damping on horizontal and rocking 
modes, respectively, evaluated as 
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Note that Ch and Cr represent the equivalent soil dashpot and are 
also taken from the impedance functions. 

6 RESULTS 

With the procedure presented above a 56 m soil deposit is 
studied. Its properties are βs = 67.7 m/s, ν = 0.45 and ζ = 5 %. 
The analyzed structures show between 0.2 and 5 s of 
fundamental structural periods and 5 % of material damping. The 
structure foundation is partially compensated with 64 floating 
piles. The plan dimension of foundation is 20 x 20 m and its 
piles have 40 cm diameter. This configuration is shown on 
Figure 6. 
  

 
Figure 6. Soil-foundation-structure system 
 
The results are presented in Figures 7 and 8. In figure 7 the 
enlargement of period with respect the fixed base original 
structural period is shown. In figure 8 the increase of damping by 
dynamic interaction effect is presented. For both, 7 and 8 
Figures, the abscissa axe represents the interaction intensity. 
 

 

 

7 CONCLUSIONS 

Charts to obtain impedance function for floating piles foundation 
in Mexico City are presented. A simple analytical solution to 
consider floating pile groups is included. An approximate 
technique to compute the response of the soil-foundation-



structure is presented. Effective period and damping of structures 
with floating piles in soft soil deposit on Mexico City are 
presented.  
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